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Abstract. One of the major challenges in the energy transition of the built environment is how 

to integrate energy-producing neighbourhoods into the existing energy infrastructure. The aim 

is to avoid the peak load of local renewable energy by consuming it at district level as much as 

possible. The energy transition puts an increasing burden on the local energy grid, because of 

the increasing electrical load on the demand side by heat pumps and electrical vehicle charging, 

but also because of the increasing intermittent supply of energy through solar power and wind 

turbines. With a predictive twin, a digital representation at building and neighbourhood level, 

supply and demand can be better balanced, so more solar power is used locally and peak load is 

avoided. The predictive twin “SirinE”, developed by TNO, is a hybrid scalable model consisting 

of both a physical model for the building and installations, and an AI (Artificial Intelligence) 

model to describe the user behaviour. In the Horizon 2020 project syn.ikia, we are deploying this 

predictive twin in a model predictive controller (MPC) to use a temporary excess capacity of on-

site solar energy as efficiently as possible. In this paper we present the model structure and the 

first simulation results for the energy prediction needed for the MPC. 

1. Introduction 

By 2050, the entire built environment must be energy neutral. A major challenge in the energy transition 

of the built environment is how to integrate energy-producing neighbourhoods into the existing energy 

infrastructure. The exponential increase of heat pumps and electric vehicles will lead to higher peaks in 

electricity demands. Intermittent availability of different renewable energy sources with associated trade 

platforms [1] will require energy systems to switch between energy sources fluently and at short notice. 

To ensure stability and security of supply, the energy network will need to incorporate a mix of different 

commodities (electricity, heat and possibly hydrogen networks) [2] and be capable of smart balancing 

energy supply and demand on a district level to avoid network congestions. Building level energy 

management (in houses, offices, hotels, etc.) can play an important role in the reduction of peak demands 

by distributing energy demand over time and over the different commodities. Building models can play 

a role in this increasing need for load balancing. The challenge is to develop a building model that not 

only plays a central role in optimizing energy efficiency at the individual building level, but can also - 

and more importantly - serve as a prime actor in balancing energy at the district level. The aim is to 

avoid the peak load of local renewable energy by consuming it at district level as much as possible.  
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To be able to balance the energy production within the capacity constraints of the local energy grid 

a reliable prediction or forecast of both decentralized renewable energy production and energy use of a 

building is needed. To be able to choose the right control scenario for a controller to balance energy, we 

need to be able to make short-term predictions based on different control scenarios. Therefore the 

application of the model is to produce a short-term (1 day ahead) prediction of the building energy 

demand and of the decentralized renewable energy prediction.  

Occupant behaviour shows to be a major factor in the energy demand of a building and therefore it 

is essential that the consequences of behaviour on the energy use can be predicted by the model. 

Furthermore, the involvement of occupants may lead to changes in the occupant behaviour. As a 

consequence the prediction model must adapt itself continuously to reflect these changes. 

The current state of the art in research in this field follows two directions. The first one focuses on 

smart district level control using Artificial Neural Networks and agent technology or Model Predictive 

Control [3, 4, 5]. Representation of individual building level energy requirements and performance in 

these models is simplistic and static, using simple fixed demand/supply curves. The second research 

direction focuses on single building scheduling and control studies using physical models simulated in 

specific tools, e.g. TRNSYS or Energy-Plus [6, 7] or RC networks [8]. Over the past few years, the 

academic focus in this research area has shifted from black box models to hybrid models because the 

latter give better predictions and achieve higher robustness [2]. The current generation of hybrid models 

of buildings is mostly focused on a single type of building and mainly uses fixed user profiles to model 

the heating demand.  

2. Hybrid building model SirinE 

SirinE is a hybrid predictive digital twin model for buildings and consists of a physical building model 

which solves the heat flow balance equations, and a data-driven occupant model which models the 

interaction of the occupants with the building components (e.g. thermostats, windows, electric 

appliances, etc.) and includes the effect of occupants actions in the heat flow balance equations.  The 

unique aspect of SirinE is that it is a scalable model, which is currently not available. The current state 

of the art clearly shows the need for uniform scalable and more realistic building models which can 

tackle multiple functions and model interactions with the grid [9]. 

The building model of SirinE consists of a heat balance network that is automatically derived from 

the Building Information Model (BIM) that describes the geometric configuration and construction 

properties of the building (consisting of all spaces, walls, windows, doors, roofs, etc.) and the Building 

Energy Model (BEM) describing the building heating, cooling and ventilation equipment and its 

controllers. With the automatic generation of the heat network, the simulation model can be easily 

adapted to different building types, such as apartment buildings, row houses and office buildings. 

Furthermore the data used to calibrate the model makes use of the standardized ontology of Haystack. 

The simulation model is therefore easily scalable for different building typologies and the initialization 

time is short.  

A generic occupant module (framework) has been created within SirinE which is responsible for 

reproducing the interaction of the occupants with the building. The occupant module contains distinct 

submodules, each associated with a certain occupant behaviour such as occupancy, interaction with 

windows or interaction with a thermostat setpoint. The implementation is quite flexible, in the sense that 

each of the submodules could be connected to a various set of predictive models, ranging from simplistic 

approaches (e.g. fixed hourly profiles) to complex AI algorithms. Receiving the state of the building at 

each timestep from the building simulator, along with weather information (figure 1), the occupant 

module predicts the occupant behaviour for the next time step and sends it back to the building simulator. 

The AI-based occupant module, in combination with the physics-based building simulator, makes SirinE 

a hybrid digital twin.   

The building heat balance model dynamically interacts with the occupant model. This has been 

implemented in an agent-based framework. All individual users (or groups of users defined as a user 

role) are agents that interact with the heat balance model in a dynamic simulation over the prediction 

horizon. The occupant models that have been implemented (simple hourly schedules, models for 

thermostat and appliances based on sliding averages, Markov chain models for window opening 
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behaviour) highlight the hybrid nature of SirinE. At the same time, the emphasis should be made that 

this is a general framework that can be coupled to any occupant model.  

 

Figure 1. Interaction between the occupant model and the building simulation model within SirinE. 

3. Hybrid building model SirinE for load balancing of an energy positive neighbourhoud 

In the Horizon 2020 project syn.ikia, we are deploying the predictive twin SirinE in a model predictive 

controller (MPC) to use a temporary excess capacity of on-site solar energy as efficiently as possible. 

This MPC is applied in a demo Sustainable Positive Energy Neighbourhood (SPEN) in Uden. This 

neighbourhood consists of an apartment building with 39 apartments, each having its own PV panels 

and ground source heat pump for domestic hot water and space heating, and common neighbourhood 

PV and Electrical Vehicle charging stations.  

To shift the energy load of the apartments to better utilize the energy generated by the photovoltaic 

panels, we calculate the optimal time to start heating the buffer vessel for domestic hot water and the 

time to start the space heating. We can shift the start time of space heating quite easily because the 

dwelling is both well insulated and has a large building mass in the floors and walls. Therefore the 

building will react quite slow to cooling down and heating up the rooms. 

To develop a model predictive control for load balancing, a multizone model for the apartment 

building in Uden was constructed, where each room was considered a thermal zone. Each zone 𝑧𝑖 is 

represented by a temperature node 𝑇𝑧𝑖 in the heat network. Each physical layer of boundary surfaces 

(i.e. walls, floor, ceiling and roofs) constitutes a temperature node in the heat network. For 𝑘th layer of 

the 𝑗th boundary surface 𝑆𝑗,𝑘 (𝑘 = 1 corresponds to the innermost layer, 𝑘 = 𝑛 to the outermost one), a 

temperature node 𝑇𝑆𝑗,𝑘 is added to the heat network. In addition all boundaries (outdoor environment, 

ground etc.) are represented by a temperature node. The heat flow balance equations can be summarized 

as follows: 

 For the zone 𝑧𝑖: 

 
𝐶𝑧𝑖

𝜕

𝜕𝑡
𝑇𝑧𝑖 = ∑ 𝐴𝑗ℎint

surf(𝑇𝑆𝑗,𝑛 − 𝑇𝑧𝑖)

𝑆𝑗∈𝑧𝑖

+ 𝑄𝑧𝑖,𝑣𝑒𝑛𝑡 + 𝑄𝑧𝑖,𝑖𝑛𝑡 + 𝑄𝑧𝑖,𝑠𝑜𝑙 + 𝑄𝑧𝑖,ℎ𝑒𝑎𝑡/𝑐𝑜𝑜𝑙 
 

(1)   
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 For the innermost surface layer 𝑆𝑗,1 of the boundary surface 𝑆𝑗 which is in direct contact with 

the zone 𝑧𝑖: 

 
𝐶𝑆𝑗,1

𝜕

𝜕𝑡
𝑇𝑆𝑗,1 = 𝐴𝑗ℎint

surf(𝑇𝑧𝑖 − 𝑇𝑆𝑗,1) + 𝐴𝑗ℎ2,1
(𝑗)
(𝑇𝑆𝑗,2 − 𝑇𝑆𝑗,1) 

 

(2) 

 For the internal layers of the surface 𝑆𝑗: 

 
𝐶𝑆𝑗,𝑘

𝜕

𝜕𝑡
𝑇𝑆𝑗,𝑘 = 𝐴𝑗ℎ𝑘,𝑘−1

(𝑗)
(𝑇𝑆𝑗,𝑘−1 − 𝑇𝑆𝑗,𝑘) + 𝐴𝑗ℎ𝑘+1,𝑘

(𝑗)
(𝑇𝑆𝑗,𝑘+1 − 𝑇𝑆𝑗,𝑘) 

 

(3) 

 For the outermost surface layer 𝑆𝑗,𝑛 in contact with the outside environment: 

 
𝐶𝑆𝑗,𝑛

𝜕

𝜕𝑡
𝑇𝑆𝑗,𝑛 = 𝐴𝑗ℎ𝑛,𝑛−1

(𝑗)
(𝑇𝑆𝑗,𝑛−1 − 𝑇𝑆𝑗,𝑛) + 𝐴𝑗ℎext−conv

surf (𝑇𝑜𝑢𝑡 − 𝑇𝑆𝑗,𝑛)

+ 𝐴𝑗ℎext−rad
surf (𝑇𝑜𝑢𝑡 − 𝑇𝑆𝑗,𝑛) + 𝐴𝑗𝐹𝑠𝑘𝑦𝑗ℎext−rad

surf (𝑇𝑆𝑘𝑦 − 𝑇𝑜𝑢𝑡)

+ 𝑄𝑆𝑗,𝑠𝑜𝑙 

 

(4) 

The parameters in the above equations are defined as:  

𝐶𝑧𝑖: thermal mass of zone 𝑧𝑖. 

𝐶𝑆𝑗,k: thermal mass of surface layer 𝑆𝑗,𝑘 of the boundary surface 𝑆𝑗. 

𝐴𝑗: the area of the boundary surface 𝑆𝑗. 

ℎint
surf: the internal surface heat transmission coefficient, including both the convective and radiative 

transmissions. 

ℎext−conv
surf : the external convective surface heat transmission coefficient. 

ℎext−rad
surf : the external radiative surface heat transmission coefficient. 

 ℎ𝑘+1,𝑘
(𝑗)

: conductive heat transmission coefficient between the 𝑘th and (𝑘 + 1)th layers of the boundary 

surface 𝑆𝑗. 

𝑇out: outdoor temperature. 

𝑇Sky: apparent sky temperature. 

𝐹sky𝑗: view factor to the sky for the boundary surface 𝑆𝑗. 

𝑄𝑧𝑖,𝑣𝑒𝑛𝑡: ventilation heat flow for the zone 𝑧𝑖. In SirinE this is calculated by solving the steady-state 

airflow balance equations. 

𝑄𝑧𝑖,𝑖𝑛𝑡: internal heat flow for the zone 𝑧𝑖 due to occupants and household appliances. 

𝑄𝑧𝑖,𝑠𝑜𝑙: solar heat flow for the zone 𝑧𝑖 via the windows. 

𝑄𝑆𝑗,𝑠𝑜𝑙: absorbed solar power by the external boundary surface 𝑆𝑗.  

𝑄𝑧𝑖,ℎ𝑒𝑎𝑡/𝑐𝑜𝑜𝑙: heating or cooling flow delivered to zone 𝑧𝑖 via the floor heating system. In SirinE this is 

calculated by modelling a plant loop system, which includes a heat pump, a source-side pump, a load-

side pump and a ground heat exchanger and solving the steady-state flow and heat flow balance 

equations. 

In addition to the Building model, a combined tank and heat pump model is used to simulate the 

production of the domestic hot water (DHW). The model solves the heat flow balance equations between 

the layers of hot water inside the tank taking into account the heat stratification in the water volume.  

To calculate the losses due to ventilation and infiltration TNO has developed a multizone airflow 

model, AirMAPs [10]. Similar to COMIS [11] it is based on a network model. Each zone in the building 

is considered homogeneous for temperature and is represented by a node. The nodes are linked in a 

network to model the airflows. This network consists of all the openings, ventilation grills, cracks, fans 

and other air flow components. This model not only takes into account the airflows induced by fans but 
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also includes the effects of wind and buoyancy resulting from temperature differences. Furthermore, the 

additional airflows due to the turbulent air exchange of large openings of windows and doors are 

modelled  This airflow model interacts with the heat network model within SirinE. At one timestep the 

temperatures of the heat network are passed on to the airflow model, while on the following timestep 

the calculated airflows are passed on to the heat network model. 

4. First simulation results for the prediction 

As an input for the model predictive controller a reliable prediction is necessary for both the temperature 

in the different zones and the energy use of the heat pump. The simulation is performed using a heat 

pump control comparable to the real installation control, which uses an on-off controlled heat pump for 

both space heating and for heating of domestic hot water. 

We have simulated the indoor temperatures and the energy use of the heat pump during a year. In 

the summer of 2022 the tenants moved in to the apartments, and from that date we can validate the 

SirinE simulation results and we can start implementing the model predictive controller. Figures 2 and 

3 show the simulated temperature profiles as well as the electric power consumption by the heat pump 

during a whole year for one of the apartments in the apartment building in Uden. 

 

 

Figure 2. Simulated temperature profiles during a whole year for all rooms in one of the apartments in 

the apartment building in Uden. 
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Figure 3. Simulated electric power consumption by the heat pump during a whole year for one of the 

apartments in the apartment building in Uden. 

5. Conclusion 

The paper provides an overview of a novel hybrid modelling approach for buildings. A challenge with 

models that are based on heat networks is that they can be slow. With the SirinE model we are able to 

perform predictions of several scenarios for future control, within the time constraints of the control 

problem A unique quality is that the building model uses a standardized data format for both the BIM 

(gbXML) and the building data (Haystack), therefore the model is scalable and quick to initialize. Next 

step is to implement and test the model predictive controller in the Sustainable Positive Energy 

Neighbourhood (SPEN) in Uden. 
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