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Abstract 
The Energy Performance Gap (EPG) is a phenomenon 
that both can be encountered in new and in refurbished 
buildings and potentially jeopardises the effort of making 
buildings more sustainable. Often, buildings are affected 
by a more generic “performance gap”, meaning that, 
beside the EPG, also the comfort delivered to the 
occupants is not as requested. 
In this work, we present a Human-in-the-Loop (HuiL) 
approach to control buildings. We developed a mobile app 
that allows occupants to provide their personal feedback 
about their indoor thermal sensation in real time, while 
monitoring their actual location within the building. 
Based on the thermal sensation votes, the system is 
capable of controlling the settings of smart thermostats in 
each room of a building. We tested the mobile app and a 
preliminary feedback-based manual control of the 
thermostats in a school building located in the Greater 
Copenhagen Area. Preliminary results show a higher 
comfort, when using the HuiL perception-based control 
approach: in particular, the answer “good”, used to 
positively rate the indoor temperature, was chosen 50,9% 
of times in a period with standard set points, and 63,3% 
of times in a periodwhile the set points of the smart 
thermostats of the classrooms were chosen based on a 
HuiL perception-based control. 
Key Innovations 
• Going beyond set-point: paradigm shift with 

perception-based control of buildings 
• Full automatic control of buildings with HuiL control 

to maximise occupants’ comfort 
• Live occupancy data for future Model Predictive 

Control and Flexibility activation 
• Possibility to profile occupants and cluster them 

accordingly to their comfort requirements. 

Practical Implications 
Thanks to the here presented mobile app, occupants can 
rate the indoor climate in their exact location. The 
occupants are localised thanks to a low-cost Bluetooth 
Low Energy (BLE) beacon network, hence, for the 
occupants, the feedback procedure is very simple. Big 
office buildings, schools, public buildings, and even 
commercial buildings can finally allow occupants to 
interact with the building HVAC, instead of letting an 

undefined and variable group of them dealing with 
complex set points choices. 
Introduction 
In Northern Europe and USA, human beings spend more 
than 90% of their time in buildings (Prasad and Samuels, 
2005; US EPA Office of Policy, Economics, and 
Innovation, 2009). We live in buildings, most of us work 
in buildings, and we even play sport in buildings. It is 
therefore not surprising, that we put high expectations on 
the built environment: The built environment should be 
comfortable, and the air should be clean (Calì 2016). 
However, a comfortable indoor environment and clean air 
in buildings comes at a cost: an intense use of energy. 
Despite this intense use of energy, buildings are still 
affected by the so-called Energy Performance Gap (Attia 
et al., 2013; Calì et al., 2016b; Fokaides et al., 2011; 
Magalhães and Leal, 2014; Menezes et al., 2012; 
Tronchin and Fabbri, 2008; De Wilde, 2014), broken 
occupants’ expectations, and rebound effect (Berkhout et 
al., 2000; Calì and Müller, 2011; Galvin, 2015, 2014; 
Greening et al., 2000; Haas and Biermayr, 2000; Hens et 
al., 2010; Roels et al., 2017; Sunikka-Blank and Galvin, 
2012). The three abovementioned phenomena can be 
referred to as “Buildings’ Performance Gap” (BPG). 
What’s wrong with buildings? And: what is 
the way out of the BPG? 
The performance gap of existing, retrofitted, and new 
buildings jeopardizes the effort to reach the 
decarbonization target. 
We identify three major areas of interest that have to be 
addressed, if we want to minimize the BPG, and hence 
minimize the buildings high CO2 emissions, and the 
number of dissatisfied occupants. Those areas are 
TRUST, EFFORT, and VOLATILITY. The first two 
areas are strictly related to the buildings’ occupants, 
owners, and managers, while the third keyword is also 
related to the energy grid. 
Trust & Effort 
The annual retrofit rate of existing buildings in developed 
countries is generally around 1%. As a consequence, the 
building stock can only provide comfort conditions to 
their occupants, at a high energy cost.  
At a first glance, we could erroneously think that people 
are not interested in comfort, nor in a good indoor 
environment. But, if we think of the car market, we 
discover that many recent cars have double climate 



control, air conditioning, and even heated seats and 
steering wheel. We can call it the “The High-tech car vs. 
Low-Tech house paradox” (Figure 1), or, in other words, 
“why we do treat ourselves as kings in our cars, as 
Neanderthals in buildings”. The discrepancy between 
high-tech cars and low-tech houses is explained through 
Trust and Effort. 

 
Figure 1 The High-tech car vs. Low-Tech house paradox 
We trust that systems in cars will work together, that they 
will deliver the expected service, and we know one brand 
(the car-brand) guarantees that the components (produced 
from a number of different companies) will work and 
communicate together. On the contrary, in buildings we 
generally connect a retrofit to a big effort (craftsmen at 
work, dust) and we distrust that the building will reach the 
promised performance. As a consequence, we need tools 
that can evaluate, in real time, the performance of 
buildings: the first goal to mitigate the BPG is hence to be 
able to prove that buildings deliver the requested level of 
comfort without wasting energy. Ensuring this means 
being transparent about both indoor environment data and 
energy usage data of buildings. A transparent data 
handling could be key to get buildings’ owners’ trust. 
Secondly, to address the entire building stock, we need to 
develop scalable solutions that can quickly be rolled out, 
and hence have the lowest possible retrofit effort. 
Volatility 
The third aspect we should keep in mind when dealing 
with buildings is connected to volatility. Volatility in 
buildings is both on the usage side, as well as on the 
production side (Figure 2).  
On the one hand, buildings are mostly planned and 
controlled based on assumptions and fixed schedules 
which might have been valid in the Sixties. However, our 
society evolved: For example, residential buildings where 
families live are often empty during the day while both 
parents go to work and children stay until afternoon at 
schools; in parallel, work-from-home became reality, also 
several times a week. On the other hand, not only is the 
demand for comfort volatile: to minimize buildings’ 
impact on climate change, we must maximize the use of 
renewable energy sources. Consequently, the production 
of energy is non-projectable. Matching the volatile usage 
of buildings with intermittent energy production can help 

both enhancing personal comfort and reducing CO2 
emissions caused by heating, ventilating, and cooling the 
existing building stock. 

 
Figure 2 Volatility issue in buildings, and related goal 

A path to solve the buildings’ performance gap 
The call for transparency is clear and cannot prescind 
from a valuable monitoring tool of the building 
performance. Moreover, the goals identified in the 
previous section call for a paradigm shift in the way we 
control buildings today. The fast developments in IoT and 
their potential integration in the built environment 
represents a big chance to transform legacy buildings into 
a Cyber Physical System (CPS) (Gil et al., 2020). 
Bavaresco et al. (2019) state the necessity to include the 
“human-dimension” into the control loop of buildings, 
which they identify as “Cyber Physical Social Systems” 
(CPSS). On the one hand, buildings handled as a CPS or 
a CPSS can easily integrate the human dimension through 
a human-in-the-loop perceived-based control. On the 
other hand, they can provide valuable data to understand 
issues, and find optimal solutions to address them. 
Methods 
In this section, we describe the building we adopted as a 
case-study and developed as a CPSS, in order to test our 
HuiL perceived based control platform, as well as the 
solution we propose to the “TRUST, EFFORT and 
VOLATILITY” issues. 
Demonstration Case 
In order to demonstrate the project, we selected an old 
building from a school (Lex et al., 2019) located in the 
Høje Taastrup Municipality, in the Greater Copenhagen 
Area in Denmark. The school building (Figure 3) was 
built at the beginning of the twentieth century and was, 
years ago, partially refurbished with new windows and a 
ventilation system. A total of 28 locations (10 classrooms, 
2 meeting rooms, 1 office room, 8 open spaces such as 
corridors, entrances, and stairs, 7 service rooms.), are 
distributed over three floors.  Both the heating and the 
ventilation system are connected to district heating. Most 
of the radiators of the classrooms and corridors are old 
cast-iron radiators; some of those are also under-
dimensioned. 
Through a server using an MQTT (Message Queuing 
Telemetry Transport) publish-subscribe network 



protocol, we established a two way connection to the 
HVAC system. Hence, we are able to monitor the HVAC 
system and eventually change set points of the inlet 
temperature both in the ventilation as well as in the 
heating system. Moreover, we can turn on and off the 
ventilation system. On some radiators, we installed 
sensors to monitor the outlet temperature. Through energy 
meters, we monitor both electricity and heating energy 
use. In February 2019, we installed 65 smart thermostatic 
valves, and six gateways, to control the set temperature of 
each single radiator/room.  

 
Figure 3. Facade of the building of the school. 

Online monitoring platform: Climify 
TRUST and EFFORT are connected, since our willing to 
make an effort to retrofit a building is proportional to the 
trust we have in the benefit that such a retrofit solution 
would bring. Transparency is a key component of TRUST: 
being transparent means to provide an access (to the 
buildings’ owners/occupants/managers) to the raw data 
and to pre-evaluated data of the buildings, related to the 
indoor environment, and related to the energy use.  

 
Figure 4 Qualitative evaluation of the measurements 

(e.g. a single measurement, such as the room 
temperature, or a combination of measurements, such as 

temperature and humidity combined) in each room, in 
live-stream modus. 

In order to maximize TRUST and minimize the EFFORT, 
we developed Climify, a platform dedicated to the 

monitoring of buildings. Through Climify, also existing 
buildings with legacy systems can become a Cyber-
Physical-System: Climify connects IoT devices from 
different vendors together. 
The devices that can be connected to Climify include 
sensors (e.g. CO2, temperature, humidity, etc.) and 
actuators (e.g. smart thermostats, smart shutters, window 
motors, pumps, etc.). Through Climify, the data are 
collected and presented to the buildings occupants, and to 
the buildings managers/owners. The visualization options 
of Climify include both qualitative (Figure 4, Figure 5) 
and quantitative methods. 
Climify can be used to visualize issues in the built 
environment and check that the indoor environmental 
parameters and the energy use of the building are aligned 
to the expectations.  
Finally, occupants can use Climify to exchange 
information (e.g. to signalize issues) with each other and 
with the building managers, and to learn about good 
practices on operating buildings (through the 
visualization of learning videos e.g. on the correct way to 
ventilate buildings).  

 

 

 
Figure 5 Qualitative evaluation of the measurements 

through time (selection of day and time of day). 
Feedback app: FEEDME 
As discussed in the previous chapter, VOLATILITY has 
to do both with occupants’ volatile needs, and energy 
volatile production. Through the app FEEDME we 
address the volatility of the occupants. In standard 
buildings, occupants interact with the built environment 
either by choosing set points (e.g. set points of the 
thermostat, of the ventilation) or by controlling actuators 



directly (e.g. switching on and off lights, closing or 
opening windows, blinds and shutters, etc.).  
Recent attempt to gather the feedback from users and use 
those feedback in the control loop, include the use of 
small wall-panels with two buttons (Adolph et al., 2014): 
Occupants could state they were cold or warm, by pushing 
one of the two buttons. Preliminary studies from (Adolph 
et al., 2014) shows energy savings by 10% compared to 
manually operated thermostats. Further attempts include 
the use of smileys to rate the indoor environment (mostly 
the temperature) or a single button to signalize 
dissatisfaction. 
All those systems have the advantage to be easily 
accessible to any user. However, even a single unsatisfied 
occupant could rate very often (not only through a 
revealable fast and short series of inputs, but also e.g. 
every hour), and hence strongly impact in the control 
strategy of an entire office or classroom. 
Most modern system make use of mobile phone apps. 
Users can use their mobile phone to rate the indoor 
climate, and this rating is gathered by a server and 
potentially used in the control loop. The main advantage 
of those systems is related to the chance to connect a 
feedback to a single occupant. Those systems are, at time 
of writing, only in a prototype phase, and require the 
occupants to manually communicate their position within 
the building. Inserting the position of occupants manually 
has two main disadvantages: it is a first barrier to leave 
the feedback (since it makes the feedback provision 
operation a more complex task), and it increases chances 
of mistakes when choosing/typing the own indoor 
location. 

 
Figure 6 Qualitative evaluation of correctness of room 
recognition by the FEEDME app on ground floor (GF), 
and qualitative reach-range of the beacons installed on 
GF (beacons from upper floors reach also on GF, but 

are not visualised here).  
The feedback mobile application FEEDME (open source: 
https://github.com/DTUFeedme/feedme-ios) is the core 
of our system, and it allows occupants to provide their 

personal feedback about the perceived indoor 
environment.  
FEEDME differs from standard feedback apps through its 
location service. It uses a Bluetooth Low Energy (BLE) 
beacon network, and through a self-implemented 
classification algorithm known as k-NN, it locates the 
indoor position of occupants. We proved the correctness 
of the localization service which we could get through the 
FEEDME app. Figure 6 shows the validity of the 
localization service and the qualitative signal strength of 
the BLE network on the ground floor. We conducted three 
set of measurements in each corner, four set of 
measurements in the inner area of each room: The 
measurements are realized with an iPhone 7.  
A researcher was standing at the corners and in the center 
of each room and was testing the correctness of the 
localization detection service with the iPhone, pointing 
the phone towards three different directions (four, when 
measuring in the middle of the room); For each direction 
(represented by a colored segment in the figure) 3 separate 
measurements have been conducted). The results are 
plotted in Figure 6: the color green indicates 100% correct 
detection, yellow indicates 66%, orange 33%, red 0%. As 
Figure 6 shows, closed rooms such as meeting rooms, 
classrooms and offices are mostly recognized 100% 
correctly. However, open rooms not always could 
precisely be recognized. We could have enhanced the 
precision of the service by ordering and then installing a 
larger number of beacons but decided not to do so not to 
slow down the study.  
Once the finger printing process was done, and the 
localization service was enabled, we started posting 
specific questions to the rooms. FEEDME allows building 
managers to post an unlimited number of questions with 
a related set of pre-defined answers to specific rooms. A 
screenshot of the app can be seen in Figure 7.  
Building Control and experimental set up 
We asked the teachers about their perception of the indoor 
temperature in the room, and allowed them to provide 5 
answers:  
• “Alt for varmt” – Far too warm 
• “lidt for varmt” – A bit too warm  
• “God” – good 
• “Lidt for koldt” – A bit too cold 
• “Alt for koldt” – Far too cold 
The teachers decided to provide feedback up to twice a 
day, when entering the rooms, the first time in the 
morning, and when leaving the rooms, right before 
leaving the school, in the afternoon. They were also 
allowed to provide feedback whenever they wished to do 
so. In total, the teachers provided 108 feedbacks in the 
period between the 15 of January 2020 and the 13 of 
March 2020 (this period includes a one-week winter 
holiday in February). 
For the first two and half weeks of the experiment, until 
the 2.02.2020 (what we refer to as Period 1), we used a 
fixed schedule for heating the rooms. 



In Period 2, from the 3.02.2020 to the end of the 
experiment, an operator started adjusting the temperature 
in each room accordingly to the teachers’ feedbacks, the 
actual set point, and the actual temperature monitored in 
the rooms.  
It shall be noticed that this is just a preliminary study and 
no systematic control algorithm has been implemented 
yet: the final decision on the variation of set point was in 
the hand of the operator.  

 
Figure 7 Screenshot on a mobile phone of the app 

FEEDME related to the question “How do you perceive 
the indoor temperature?” and 7 possible answers. 

User Incentives 
The school addressed within this experiment has been in 
focus of several research projects related to indoor 
environment, heating and ventilation, since 2017.In Jan. 
2019 we introduced the possibility to provide feedback, 
for the teachers, and we explained that this was their 
chance to actively decide the indoor climate of the 
classrooms; Moreover, to incentivize the usage of the app, 
and to also obtain specific feedback on the app usage, we 
provided, as a gift, a new coffee machine to the school 
(for usage among teachers only). 
Preliminary Results 
During Period 1, we used a fixed schedule for heating the 
rooms: 

• 22°C during the day, between 6 am and 3 pm, 
• 16°C during night. 

The school is usually occupied from 8 am to 3 pm. During 
this time, we received 58 feedbacks, plotted in Figure 8. 

 
Figure 8 Number of times each single answer was given, 

and percentage of that articular answer for Period 1 
About 51% of the answers (29 answers) were positive 
about the indoor climate, 21% of the answer were 
indicating a warm (8 answers, 14% of the total) or a too 
warm (4 answers, 7% of the total) indoor climate. The 
answer “a bit cold” was provided 14 times (24.6% of the 
total), while the answer “too cold” was provided 2 times 
(3.5% of the total). 
In Period 2 we started adjusting the temperature in the 
rooms accordingly to the teachers’ feedbacks and 
temperature measurements. Mapping the single answers 
to the single rooms, we manually adapted the set-points 
of the classrooms (see Figure 9 for the number of rooms 
with a specific set point during daytime, after the 
adjustment). In one room, a very high set temperature 
(26°C) was necessary to satisfy the occupants: this room, 
particularly big and located on the first floor, has 3 big 
non-insulated outer walls, 3 windows, and only two 
radiators on one outer wall. Most of the rooms (21 rooms) 
had finally a set temperature of 23°C. 
 

 
Figure 9 No. Of rooms with a specific set-temperature, 

at the end of Period 2. 
In Period 2, over 63% of the answers (31 answers) were 
positive about the indoor climate, 12% of the answer were 
indicating a warm (5 answers, 10% of the total) or a too 
warm (1 answer, 2% of the total) indoor climate. The 
answer “a bit cold” was provided 10 times (20.4% of the 
total), while the answer “too cold” was provided 2 times 
(4% of the total). 



 
Figure 10 Number of times each single answer was 
given, and percentage of that articular answer for 

Period 2 
In Period 2 teachers were generally more satisfied than in 
Period 1, which indicates that adopting indoor climate to 
occupants’ feedback has a great potential. Also, the total 
number of answers was bigger under Period 1 (57 answers 
over 12 working days, 4.7 answers per day) than under 
period 2 (49 answers over 23 working days, 2.1 answers 
per day). A lower number of answers under Period 2 could 
indicate: 
• A lower interest or engagement of the teachers in 

using the app, and/or 
• A bigger occupants’ satisfaction (no need to answer 

since the indoor climate is good).  

Proposal of a basic control strategy 
As a first stage control scheme, we present a simple 
adaptive control method. Whenever a teacher (or more in 
general an occupant) gives the feedback “cold” or “very 
cold”, the controller increases the set-point value for the 
radiator(s) in the given room. Vice versa whenever a 
teacher gives the feedback “A bit too hot” or “Way too 
hot”, the controller decreases the set point value. The 
amount with which the controller will increase or 
decrease the set-points are not trivial though and depend 
on the exact answer of the occupants.  

   
Figure 11 Response value to feedback “Way too cold” 

 
Figure 12 New set-temperature after feedback “Way too 

cold” 
Figure 11 and Figure 12 show the so-called response-
function for the feedback “Very cold”. This is a function 
of the current set-point and maps the current set-point into 
the new set-point. In particular, Figure 11 shows the 
response value alone, while Figure 12 shows the new set-
temperature for the response “very cold”. 
Both Figure 11 and Figure 12 show three possible types 
of functions: an exponential, a linear and a reciprocal 
function. They are all three doing the same: they lower (or 
raise) the temperature according to some scale as a 
function of the current temperature. The scales have 
different properties, e.g. the exponential decay accounts 
more for lower responses for higher temperatures. 
However, the response scale may be, and probably is, an 
individual preference. Future work involves learning the 
individual response functions from data to personalize 
them to each costumer.  
We choose a fixed lower and upper set-point response, 
where the function is truncated. The maximum set-point 
response happens when the current set-point is already 
low, and increases it by 4 degrees Celsius. In the reverse 
case, the lowest set-point response happens when the 
current set point is already high, and increases it by 0.5 
degree Celsius. By having these points fixed, 
(𝑥𝑥1, 𝑦𝑦1)=(15,4) and (𝑥𝑥2, 𝑦𝑦2) =(28,1), we can compute the 
parameters of the response function, a and b. 
We choose to truncate the ends of the functions, to make 
sure that the response does not explode in the ends. In an 
extreme case, if the set-point value prior to a feedback is 
5 degree Celsius, the exponential set-point response 
would otherwise have been around 20 degree Celsius. In 
general, we do not want such large jumps in the set-points. 
Assuming that the outdoor air temperature and other 
dependencies of the room air temperature changes 
relatively slowly, the need for set-point changes will also 
be of smaller magnitudes.  
It shall be noticed that if the teachers supply feedback 
“continuously” throughout the year the set-points adapt to 



the heat demands. E.g. during the summer, not much heat 
is required. However, when transitioning from summer to 
winter, more heating is probably necessary in order to 
maintain a comfortable temperature. This, however, is 
also a disadvantage, since the teachers need to supply 
feedback as it gets colder – otherwise the set-points do not 
change, and the indoor air temperature likely gets too 
cold. We can avoid this problem by shutting down 
manually the heating system in summer, and adopting, the 
set points of the last used heating schedule, when the 
heating season restarts. 
Discussion 
The results shown in the previous chapter are 
encouraging, yet not statistically relevant. The choice of 
the new set points of the smart thermostats was was a 
manual process, and was based on feedback and on the 
interpretation of the indoor temperature measurements 
from a single operator. Objective results can only be 
obtained in a systematic study, where also the definition 
of the new set point is done through an automatic and 
standardised process. Also, other effects such as the 
potential placebo effect and outside influences of the 
occupants should be considered in future studies – e.g. by 
using a balanced experimental design. 
In the future, we would like to set up a more sophisticated 
control approach using among other things, comfort 
models of occupants, grey-box models (e.g., continuous-
time models based on stochastic differential equations 
that describe the  thermal dynamics of buildings) or AI 
models (machine learning algorithms, black-box 
buildings models, describing the dynamics of the rooms 
and advanced weather forecasting models. In this way, we 
could: 

• Take personal preferences and presence into 
account, when choosing actual set points (e.g., 
by recording personal preferences and objective 
measurements into personal Comfort-IDs of the 
occupants); 

• Predict preferences and presence of the 
occupants, and use the prediction in the MPC of 
the thermostats. 

• Decide the right time to activate the heating of 
each single room, to achieve the needed 
temperature at the time when occupants arrive. 

Nevertheless, this study shows a general higher 
satisfaction related to the indoor temperature, of the 
teachers, when taking their personal feedback into the 
control loop. 
A main open question is related to room-control vs. 
personal control: should the feedback of several teachers 
be used to provide a generic, all day long set point for a 
specific room, or should the set point of a specific 
classroom vary with time, depending on the teachers 
presence schedules. The FEEDME app is able to track 
occupants within the buildings, and is hence able to 
personalise indoor climate accordingly to the needs of the 
individuals. 

Smart thermostats have several advantages, allowing for 
a better indoor climate control at room level. A common 
problem of public buildings is related to the use of 
thermostats. Often, when rooms have several thermostats, 
several occupants can change the settings of each single 
thermostats. Before we installed the smart thermostats, in 
many classrooms, we could detect different cases where 
one out of three thermostat was closed, one was 
completely open, one on a middle position; As a 
consequence, the indoor climate was bad (big 
asymmetries in the heat delivery) and the return 
temperature to the district heating was high, and with a 
high volume flow (caused by the thermostats open at 
max.). Smart thermostats alone, however, don’t solve all 
the issues in public buildings, where single users (e.g. 
pupils in schools or visitors in public buildings) can still 
change the setting of single thermostats ruining both 
indoor climate and energy performance. In this context, 
an app such as FEEDME can help in extending the 
advantages of smart thermostats, a product standardly 
thought for home-usage, also to non-residential buildings. 
Moreover, a deep knowledge of the occupants needs 
connected to the occupants presence patterns can help in 
predicting building needs and maximising the flexibility 
potential offered by buildings to the energy grids (Junker 
et al., 2020, 2018; Molitor et al., 2012). In this context, 
occupants behaviour models (Calì et al., 2018, 2016a; 
Haldi et al., 2017; Wolf et al., 2019) might be useful to 
understand and cluster occupants preferences; those 
models could be used in the HuiL-based control of 
buildings, and also within the simulation of buildings’ 
performance. 
Conclusion 
Technologies increased exponentially our opportunities: 
we can have nearly any light colour in our houses, through 
connected, smart LED bulbs, we can listen to any music 
just surfing in a music streaming app, we can control the 
daylight through smart shutters and blinds, set schedules 
for our thermostats, plugs, and even for opening and 
closing automatically windows. The world of automation 
is at our hands, mostly in our mobile phones. However, 
the number of options are very high, and most systems are 
trying to offer solutions that try to understand our needs 
and our preferences, adapt to our needs. A clear example 
of it is a brand-new shuffle-function of Netflix that reacts 
differently for each user profile. This show that users 
generally appreciate to have some control, but also 
appreciate automatic profiling of their needs (even if this 
means to lose some privacy, by sharing preference-related 
data). In the case of indoor environment, the choices to be 
taken are many, and are complex. A perception-based 
HuiL control brings together the advantages of 
automation, with the advantages of letting the “control” in 
the hand of the occupants, occupants are more satisfied, 
as demonstrated through this preliminary study, and is 
therefore the way to go in the future.  
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