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A B S T R A C T

We describe a method for embedding advanced weather disturbance models in model predictive control
(MPC) of energy consumption and climate management in buildings. The performance of certainty-equivalent
controllers such as conventional MPC for smart energy systems depends critically on accurate disturbance
forecasts. Commonly, meteorological forecasts are used to supply weather predictions. However, these are
generally not well suited for short-term forecasts. We show that an advanced physical and statistical description
of the disturbances can provide useful short-term disturbance forecasts. We investigate the case of controlling
the indoor air temperature of a simulated building using stochastic differential equations (SDEs) and certainty-
equivalent MPC using the novel short-term forecasting method. A Lamperti transformation of the data and
the models is an important contribution in making this SDE-based approach work. Simulation-based studies
suggest that significant improvements are available for the performance of certainty-equivalent MPC based on
short-term forecasts generated by the advanced disturbance model: Electricity savings of 5%–10% while at the
same time improving the indoor climate by reducing comfort violations by up to over 90%.
1. Introduction

It is a well known fact that the energy consumption from buildings
is high. On a global scale it is estimated that buildings consume more
than 30% of the total consumed energy, and in Europe it is estimated
to be more than 40% [1]. The high energy consumption creates a
significant potential for energy savings by optimising the use of energy
for heating and cooling in buildings, without compromising the quality
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of the indoor climate. Given the many opportunities of model-based
control and optimisation of energy consumption in buildings, a vast
body of research is available that describes the algorithms [2–5]. MPC
has gained much success within many applications due to its simplicity,
intuitive use, ability to handle multivariate and constrained systems,
and the availability of algorithms and software for embedded as well
as cloud computing [6]. However, most of this literature assumes
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that the system and disturbance models are perfect or use compu-
tationally complicated algorithms, e.g. stochastic or robust MPC, to
handle uncertainties in these models. The main novelty in the present
paper is a nonlinear disturbance model based on stochastic differential
equations (SDEs) for embedded short-term forecasting in certainty-
equivalent model predictive control (MPC) algorithms for energy and
climate control in buildings. The proposed disturbance model is based
on SDEs and forecasts the solar radiation and ambient air temperature.
The model combines physical description of the climatic processes
together with more statistical data-driven models. Beside providing
accurate short-term forecasts, the model also has the advantage that
it fits naturally into the MPC model framework, which is also based on
SDEs.

Much research suggest that SDEs are very competitive models for
modelling dynamical and physical phenomena. They also inherently
describe the distributions and uncertainties of processes by e.g. solving
the Kolmogorov-equations. Knowledge about the uncertainty can be
useful for sensitive systems that need extra operational care. SDEs have
extensive applications in finance to model e.g. interest rates, security
markets and yields [7]. They are also successfully applied in the area
of probabilistic power production. Multiple complexity-varying SDE-
models for wind power generation forecasts have been introduced and
applied [8]. Furthermore, models for forecasting wind speed up to
24 h ahead using SDEs have been proposed [9]. Recent research also
indicates that SDEs are well suited for probabilistic solar radiation
forecasting [10,11], where first order systems proves to be sufficient.
However, such models relies centrally on external long-term forecasts
from supplied by external sources. Using the external forecasts, the
models in turn supplies probabilistic forecasts. The model proposed
here relies purely on local observations and is independent of external
parties.

1.1. Literature review

The inclusion of weather forecasts for building climate control
has been investigated on multiple occasions in the literature [12–18].
In general, the predictive control schemes outperform non-predictive
control forms, such as rule-based-and PID-control, due to their ability
to consider future disturbances. The solar radiation is an important
disturbance in rooms that are considered for temperature control [12].
The fluctuating dynamics of solar radiation and the large amount of en-
ergy it delivers, complicates the indoor temperature control in buildings
with windows. These complications and uncomfortable overheating can
in many cases be avoided or minimised by accounting for the preva-
lent solar radiation using simple transfer function or regression-based
models [12,13]. MPC for buildings using models for weather forecasts
reports to significantly reduce energy consumption and increase indoor
comfort [14], increase flexibility indicators [15–17] present thorough
reviews and recent applications of MPC for building climate control
systems based on meteorological weather forecasts. Here, many studies
consider perfect forecasts or simple sinusoidal simulations and do not
take uncertainties into account. Using stochastic MPC to overcome
uncertainties in the weather predictions for temperature regulation
in integrated room automation, significant potential energy savings
compared to rule-based control are reported [18]. Such simulation
results also suggest that stochastic MPC is superior to conventional
MPC for this kind of task due to its ability to account for uncertainties
in forecasts. However, it remains an open questions whether these
differences could be mitigated by tuning or by using better forecasts.
In particular, the critical importance of also including local weather
measurements for predictive control operations of modern building
climate control systems has been noticed [19–22]. An example is to
quantify the errors of the supplied meteorological weather forecast.
These errors can be used to improve predictions of the heat load and
enables better control performance [19]. More complex models based
2

on neural networks has also been developed and applied for building
climate control [15,20]. Results suggest that such models offer good ac-
curacy but lacks the ability to generalise to arbitrary prediction lengths
or different setups [21]. Comparisons between neural networks and
simple time series models have also been carried out. Results are not
one-sided as evidence of both linear time series methods and complex
neural networks perform better than the other [23,24]. However, it
is pointed out the potential performance gain of using such complex
methods does not appear to outweigh the additional development and
data acquisition efforts [22].

It is also common in the literature to use offset-free control [25–
28]. Such approaches have the advantage that they can integrate out a
constant unknown contribution of the disturbance and thereby achieve
offset-free control [29]. However, the disturbances are not modelled
and the integration has poor forecasting abilities for fast-changing
disturbances such as the weather.

The conclusion from the literature is that weather predictions in
MPC offer significant potential energy savings and comfort improve-
ment. In general, two categories of weather forecasting methods for
MPC arise. The first category consists of cases that use meteorological
weather forecasts. In the second category, models are developed to
forecast disturbances. Here, the dominating standard is to use black-box
related models that have no physical relation such as regression-based
or neural network models.

1.2. Main aim and organisation of the paper

The main aim of this paper is to introduce a general method for
embedding forecasts and disturbance models in model-based control.
We model the local weather disturbances using advanced models based
on SDEs that includes physical descriptions of the climatic processes.
Using these advanced forecasts in certainty equivalent MPC simulated
for multiple smart building models, this paper suggests that increased
performance of building climate control is available. We compare the
advanced forecasts to offset-free control, a standard method for dealing
with uncertainty in MPC [17,30], and to controllers using perfect
forecasts.

In Section 2 we introduce the mathematical notation and system
framework. Section 3 proposes the continuous-time stochastic distur-
bance models. Section 4 introduces the MPC framework and how
to incorporate the forecasts. Section 5 analyses the dynamics of the
smart buildings considered in this paper. In Section 6 we present and
discuss the simulation-based results, while the conclusion are provided
in Section 7.

2. Stochastic differential equations and the smart building model

In general, we seek a combined model for the smart building that in-
cludes a description of the disturbances. That is, we consider stochastic
differential equation (SDE) models, sometimes called grey-box models,
in the form

d𝒙(𝑡) = 𝑓𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡))d𝑡 + 𝑔𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡))d𝝎𝑠(𝑡) , (1a)

𝒅(𝑡) = 𝑓𝑑 (𝒅(𝑡))d𝑡 + 𝑔𝑑 (𝒅(𝑡))d𝝎𝑑 (𝑡) , (1b)

𝑠(𝑡𝑘) = ℎ𝑠(𝒙(𝑡𝑘)) + 𝒗𝑠,𝑘 , (1c)

𝑑 (𝑡𝑘) = ℎ𝑑 (𝒅(𝑡𝑘)) + 𝒗𝑑,𝑘 , (1d)

here 𝒙, 𝒖, 𝒅 are the smart building system states, the input and
he disturbances respectively. 𝑓𝑠 and 𝑓𝑑 are the drift functions and
𝑠 and 𝑔𝑑 are the diffusion functions for the smart building system
nd disturbances. 𝝎𝑠(𝑡) and 𝝎𝑑 (𝑡) are standard Brownian motions and
𝑠,𝑘 ∼ 𝑁(𝟎, 𝑅𝑠) and 𝒗𝑑,𝑘 ∼ 𝑁(𝟎, 𝑅𝑑 ) are the observation noises. Notice
he causality between the system model and the disturbance model.

The combined structure in (1) differs from the literature, where the
ominating standard is to employ meteorological forecasts as described
n Section 1.1 (i.e. no disturbance model). Offset-free control [30,31]
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Fig. 1. An illustration of the smart building components and their interactions. The
arrows indicate the positive direction of the heat flows.

is another method for dealing with non-modelled disturbances, also
frequently used in the literature for smart energy systems [25–27].
The idea is to replace (1b) with an integrating state, d𝜼(𝑡) = 𝐵𝑑d𝝎𝜂(𝑡),
hat integrates and estimates the disturbances. This is limiting in two
ays, however. First, the number of integrating states cannot exceed

he number of independently observed system states – the system
therwise becomes unobservable. Second, the forecasts supplied by the
ntegrators correspond to persistent forecasts, 𝒅̂(𝑡) = 𝒅̂(𝑡𝑘), 𝑡 ≥ 𝑡𝑘.

We shall further assume that 𝑓𝑠 and 𝑔𝑠 in (1a) for the smart buildings
are linear, and that 𝑔𝑠 is state-independent, i.e. we consider a linear
model on the form

𝑓𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡)) = 𝐴𝑐𝒙(𝑡) + 𝐵𝑐𝒖(𝑡) + 𝐸𝑐𝒅(𝑡) , (2a)

𝑔𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡)) = 𝐺𝑐 , (2b)

where 𝐴𝑐 , 𝐵𝑐 , 𝐸𝑐 and 𝐺𝑐 are the continuous-time state evolution, input,
disturbance and diffusion matrices.

2.1. Smart building model

The rest of this section introduces the components of the smart
building model in (1a) and (2a).

2.1.1. System states
This paper considers a model of the heat dynamics of a building

based on Andersen et al. [32] and Halvgaard et al. [2]. Fig. 1 shows
an illustration of the smart building model components and its heat
flows. The smart building model thus considers three system states:
the room air temperature, 𝑇𝑟, the floor temperature, 𝑇𝑓 , and the water
temperature, 𝑇𝑤. The smart building model states thus become

𝒙(𝑡) =
[

𝑇𝑟(𝑡), 𝑇𝑓 (𝑡), 𝑇𝑤(𝑡)
]𝑇 . (3)

We usually observe only the room air temperature, i.e. the floor and
water temperatures are hidden states. Furthermore, the observation
equation in (1c) is linear, ℎ𝑠(𝒙(𝑡𝑘)) = 𝐶𝒙(𝑡𝑘), with 𝐶 = [1, 0, 0]𝑇 .

2.1.2. Inputs
The manipulative variable for the smart building model in [2] is

simply the input power (in Watt) given to the compressor of the heat
pump, 𝑊ℎ𝑝, that is

𝑢(𝑡) = 𝑊ℎ𝑝(𝑡) . (4)

As we will show, the smart building model equipped with a heat
pump is governed by slow heating dynamics. A simpler model that
uses electrical heaters where the heat enters the room air directly
3

makes the room air respond to heat inputs much faster. In the results o
section, we compare smart building models that use different heating
strategies where we combine electrical heaters and heat pumps as
well as electrical coolers (e.g. an air conditioner). The heat pump,
though, is more efficient (a factor 3) compared to the faster heating
devices, making it an attractive heating strategy. We shall compare the
following heating strategies

𝑢1(𝑡) = 𝑊𝑒ℎ(𝑡) , (5a)

𝑢2(𝑡) = 𝑊ℎ𝑝(𝑡) , (5b)

𝒖3(𝑡) =
[

𝑊ℎ𝑝(𝑡),𝑊𝑒ℎ(𝑡)
]𝑇 , (5c)

4(𝑡) =
[

𝑊ℎ𝑝(𝑡),𝑊𝑒ℎ(𝑡),𝑊𝑒𝑐 (𝑡)
]𝑇 , (5d)

here 𝑊𝑒ℎ is the input to electrical heaters and 𝑊𝑒𝑐 is the input to
he electrical coolers. We assume that the heat from both the electrical
eaters and coolers enters the room air directly and that they do not
ccumulate any heat themselves. We disregard the third system state,
𝑤, for the building model that only considers electrical heaters, 𝑢1(𝑡) =
𝑒ℎ(𝑡).

.2. Disturbances

As extensively reported by the literature [12,18,33], the important
isturbances acting on a building are the solar radiation, 𝜙, and the
mbient air temperature, 𝑇𝑎. The ambient air temperature affects the
ndoor air temperature through the walls and windows. The solar
adiation affects the indoor air temperature by passing through the
indows and heating either the room air or floor and furniture. For
uilding climate control, the literature considers the solar radiation the
ost influential disturbance for short-term purposes. This is due to the

arge amount of energy it delivers and its considerably fast dynamics.
or smart buildings with photo-voltaic cells (PVs), the solar radiation
lso determines the availability of harvested electricity. We shall not
onsider this case. Thus, the important weather disturbance states in
1) are

(𝑡) =
[

𝑇𝑎(𝑡), 𝜙(𝑡)
]𝑇 . (6)

𝑎(𝑡) is the ambient air temperature and 𝜙(𝑡) is the solar radiation on a
orizontal surface.

. Disturbance modelling and forecasting

This section establishes the non-linear dynamical model for the
isturbances in (1b).

The behaviour of the weather in Denmark varies throughout the
ear. Hence, in-homogeneous- or regime models for the weather are
equired in the general case. To model breaks or sudden shifts in the
ynamics, often seen in finance [34], jump–diffusion processes can be
uitable. See Bemporad et al. [35] for an introduction to a framework
or fitting such models. To deal with this, we focus our attention on
arch and assume that the weather behaviour is constant during this
onth. In Denmark, March can be both warm and cold and typically
ith much sun and is therefore an interesting month to consider.

.1. The data

To formulate, identify and validate the statistical weather models
sed in this paper, we use data from two weather stations located
n Værløse and Taastrup in Denmark. [36] thoroughly presents and
iscusses the data gathering process and setup. The data are gathered
very hour for 7 consecutive years from February 1st 1967 through De-
ember 31st 1973. Table 1 gives a description of the weather elements

f the data, how they are observed, and the observation frequency.
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Table 1
Facts about the data and how it is measured. The cloud cover unit, okta, is defined according to [37] - okta equal to zero
is completely clear skies and okta equal to eight is completely overcast.

Attribute Notation Unit Measurement method

Cloud cover 𝜅 okta Measured once every hour
Diffuse radiation 𝐼𝐷 W/m2 Average of 6 independent observations during an hour
Direct radiation 𝐼𝑁 W/m2 Average of 6 independent observations during an hour
Net radiation 𝑅𝑛 W/m2 Average of 6 independent observations during an hour
Ambient air temperature 𝑇𝑎 ◦C Average of 6 independent observations during an hour
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3.2. Weather model components

The weather disturbance model consists of 4 components:

• Cloud cover
• Global solar radiation
• Net radiation
• Ambient air temperature

The parameters for these model are available in [38] that develops,
presents and discusses these models in detail. The rest of the section
explains each weather model component and its importance regarding
building climate control.

3.2.1. Cloud cover
Important factors governing the energy levels and balances at the

surface of the Earth are significantly affected by the amount of cloud
cover. Global solar radiation is one such important example. The vari-
ations in global solar radiation are primarily due to absorption and
reflection of energy by clouds. Other mechanisms such as the amount
of water vapour, ozone, dust etc. also play a role. However, it is well
known that cloud cover plays the absolute most important role.

Due to the discrete cloud cover data, [39] and [40] show that a
discrete state–space Markov model is sufficient for modelling the cloud
cover, and furthermore that a homogeneous model could be suitable.
However, since we formulate the rest of the disturbance models as con-
tinuous state–space models it is mathematically more convenient and
consistent to choose an SDE-representation that fits into the framework
of (1). We choose a non-linear, mean-reversion process of the form

d𝜅(𝑡) =

drift
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜃(𝜅(𝑡)) (𝜇(𝜅(𝑡)) − 𝜅(𝑡))d𝑡+ 𝜎𝜅(𝑡)(1 − 𝜅(𝑡))𝑑𝜔𝜅 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffusion

, (7a)

where

𝜇(𝜅(𝑡)) =
exp(𝑃𝑛(𝜅(𝑡)))

1 + exp(𝑃𝑛(𝜅(𝑡)))
, (7b)

𝜃(𝜅(𝑡)) = 𝜃
√

𝜅(𝑡)(1 − 𝜅(𝑡)) . (7c)

𝜅 is the cloud cover state and 𝑃𝑛(⋅) is the linear combination of Legendre
polynomials till order 𝑛 = 7. The mathematical structure of the drift
allows the model to have multiple stationary points.

The term 𝜎𝜅(𝑡)(1−𝜅(𝑡)) ensures that the diffusion goes to zero in both
ends of the support and requires a transformation of the cloud cover
state into the state–space [0, 1]. Thilker [38] describes how to choose
this transformation. The diffusion term 𝜎𝜅(𝑡)(1 − 𝜅(𝑡)) is dependent on
the system state. Some of the difficulties and problems that are linked
with a state-dependent diffusion term are [11,41,42]:

• Predictions can be wrong/illegal if they go outside of the domain
of the process. This can happen due to the linearisation in the
continuous-discrete extended Kalman filter (CDEKF) and the nu-
merical implementation of the differential equation solver. To
apply filtering techniques in practice, a state-independent SDE is
much more robust.
4

• Simulation of the process has slower convergence rate (e.g. using
the Euler–Maruyama scheme) compared to a state-independent
diffusion process.

To overcome these problems, the Lamperti transformation offers a bi-
jective transformation of the process into a constant diffusion process
that lives in the domain of the entire real line, 𝜓 ∶ [0, 1] → R. Let
𝑍𝜅 (𝑡) = 𝜓(𝜅(𝑡)), then the Lamperti-transformed process has the simple
form

d𝑍𝜅 (𝑡) = 𝑓𝜓 (𝑍𝜅 (𝑡))d𝑡 + 𝜎𝜓d𝜔𝜅 (𝑡) , (8)

where 𝑓𝜓 is the drift function in the Lamperti domain. For an in-
troduction to the Lamperti transformation, see e.g. [41]. In (8), the
noise process is Gaussian, which makes computations such as e.g. confi-
dence intervals easy. Estimation, prediction and simulation take place
in the Lamperti domain and are subsequently transformed back into
the original cloud cover domain, 𝜓−1 ∶ R → [0, 1]. We estimate
the parameters in (7) by means of the maximum likelihood method
using the CDEKF [43,44]. The program CTSM-R is used to conduct
these computations of the parameter estimates [45]. Also, automatic
Lamperti transformation is being integrated into CTSM-R.

3.2.2. Global solar radiation
The term global solar radiation covers all the short-wave radiation

coming from the sun and hitting the surface of the Earth. The global
radiation is typically split into two contributions; the direct, 𝐼𝑁 , and
diffuse, 𝐼𝐷, radiation. The direct radiation is all the short-wave radi-
ation coming from the sun without hitting anything on its way. The
diffuse radiation, in contrast, is all the reflected short wave radiation,
e.g. from objects like dust, water vapour etc. in the atmosphere. The
global solar radiation is simply the total radiation (on a horizontal
plane),

𝜙(𝑡) = 𝐼𝑁 (𝑡) sin 𝛼(𝑡) + 𝐼𝐷(𝑡) . (9)

o model the global solar radiation, 𝜙, this paper performs non-
arametric local linear regression as a function of the solar height,
(𝑡), and the cloud cover okta. The estimator is then the solution to
he following weighed least squares problem

argmin
𝜙,𝛽

𝑁
∑

𝑖=1
𝐾ℎ(𝛼𝑖, 𝛼0)

[

𝑦𝑖 − 𝜙 − 𝛽(𝛼0 − 𝛼𝑖)
]2 , (10)

here 𝜙 is the estimator, 𝛼0 is the given solar height and 𝐾ℎ(⋅, ⋅) is
he Gaussian kernel function acting as the weights. We employ leave-
ne-out cross validation for selection of the band width, ℎ. [38] also
stimates a variance and auto correlation structure for the model in
10).

.2.3. Net radiation
It is well known that the so-called net radiation is necessary to

redict the ambient air temperature. The net radiation is the net input
f both short- and long-wave radiation at Earth’s surface and is the main
ource of thermal energy to the ambient air. [46,47] explains this in
ore detail and also show that a static model is sufficient. [48] suggests
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Fig. 2. An illustration of the dynamical model in (12). Each box represents a state
given by a temperature and heat capacity. The arrows indicate the direction in which
the energy is transferred.

a simple linear model that depends on the cloud cover, solar radiation
and solar height

𝑅𝑛(𝜅(𝑡), 𝜙(𝑡), 𝑡) = 𝐾𝜅 + 𝑘𝜅𝜙(𝑡) + 𝑘𝛼(𝑡)2 + 𝜖(𝑡) . (11)

The subscript 𝜅 in 𝐾𝜅 and 𝑘𝜅 indicates the parameters’ dependence on
the cloud cover. That is one parameter for each cloud cover okta, 𝜅.

3.2.4. Ambient air temperature
[49] describes and explains the fundamental relationships of surface

fluxes and the relationship between the net radiation and the ambient
air temperature. Briefly explained, the net radiation heats the surface
soil, which in turn heats up the ambient air near the surface. The time
lag between the net radiation and the ambient air temperature requires
a dynamical model and is well approximated by a simple second-order
model Thilker et al. [50]. It is well known that larger annual temper-
ature differences happen in the middle of large continents. However,
for countries surrounded by sea, the sea highly regulates the land
temperature due to the large heat capacity of water. Fig. 2 illustrates
this model that has the mathematical SDE representation [49]

𝐶𝑠d𝑇𝑠(𝑡) =
(

1
𝑅𝑠𝑎

(𝑇𝑎(𝑡) − 𝑇𝑠(𝑡))
)

d𝑡 + 𝜎𝑠d𝜔𝑠(𝑡) , (12a)

𝐶𝑎d𝑇𝑎(𝑡) =
(

1
𝑅𝑠𝑎

(𝑇𝑠(𝑡) − 𝑇𝑎(𝑡))

+ 1
𝑅𝑎∞

(𝑇∞ − 𝑇𝑎(𝑡)) + 𝑅𝑛(𝑡)
)

d𝑡 + 𝜎𝑎d𝜔𝑎(𝑡) , (12b)

𝑑𝑇𝑎 (𝑡𝑘) = 𝑇𝑎(𝑡𝑘) + 𝑣𝑇𝑎 ,𝑘 . (12c)

𝑠(𝑡) and 𝑇𝑎(𝑡) are the temperature of the surrounding sea and the
and air respectively. 𝑅𝑠𝑎 and 𝑅𝑎∞ are resistances against the heat flow
etween the states. 𝐶𝑠 and 𝐶𝑎 are the heat capacities representing the
mount of heat the states contain. 𝑅𝑛 is the net radiation as in (11) and
rives the process, 𝑇∞ is a constant in- or outflow of heat to stabilise
he system, 𝜔𝑎 and 𝜔𝑠 are standard Brownian motions and 𝑣𝑇𝑎 ,𝑘 is i.i.d.
andom observation noise. Again, we estimate the parameters in (12)
sing a maximum likelihood method and use the CDEKF to evaluate
he likelihood function.

.3. Combined disturbance model and forecasting scheme

Combining the individual climate models, the combined continuous
tate–space, stochastic-dynamic disturbance model, (1b) and (1d) in
5
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Algorithm 1 Disturbance Forecast Algorithm

require: 𝒚𝑑,𝑘 =
[

𝑑𝑇𝑎 ,𝑘, 𝑑𝜙,𝑘
]𝑇

, 𝒅𝑘−1|𝑘−1, 𝑃𝑇𝑎 ,𝑘−1|𝑘−1, 𝑡𝑘

Cloud cover predictions:
Given 𝑑𝜙,𝑘, calculate the cloud cover estimate 𝜅̂𝑘|𝑘 as the most likely
to generate the observation 𝑑𝜙,𝑘.
Compute {𝜅̂𝑘+𝑖|𝑘}𝑁𝑖=0 using Eq. (7) with 𝜅̂𝑘|𝑘 as initial condition.

Solar radiation predictions:
For each 𝑖 = 0,… , 𝑁 compute the solar radiation 𝜙̂𝑘+𝑖|𝑘 =
𝐼𝑁,𝑘+𝑖 sin 𝛼(𝑡𝑘+𝑖) + 𝐼𝐷,𝑘+𝑖.

Net radiation predictions:
For each 𝑖 = 0,… , 𝑁 compute the net radiation 𝑅̂𝑛,𝑘+𝑖|𝑘.

Ambient air temperature predictions:
Given 𝑑𝑇𝑎 ,𝑘, calculate the filtered estimate, 𝑇̂𝑎,𝑘, and its covariance,
𝑃𝑇𝑎 ,𝑘|𝑘, using the CDEKF and the model in Eq. (12). Next, compute
the Kalman predictions 𝑇̂𝑎,𝑘+𝑖|𝑘 for 𝑖 = 0,… , 𝑁 .

Let 𝒅𝑘+𝑖|𝑘 = [𝑇̂𝑎,𝑘+𝑖|𝑘, 𝜙̂𝑘+𝑖|𝑘]𝑇 be the 𝑖’th disturbance prediction.

return {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0, 𝑃𝑇𝑎 ,𝑘|𝑘

(1), gets the form:

Disturbance
model

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

d𝑍𝜅 = 𝑓𝜓 (𝑍𝜅 )d𝑡 + 𝜎𝜓d𝜔𝜅
𝜅 = 𝜓−1(𝑍𝜅 )
𝜙 = 𝐼𝑁 (𝜅, 𝑡) + 𝐼𝐷(𝜅, 𝑡)
𝑅𝑛 = 𝑅𝑛(𝜅, 𝜙, 𝑡)
d𝑇𝑠 = 𝑓𝑇𝑠 (𝑇𝑎, 𝑇𝑠)d𝑡 + 𝜎𝑠d𝜔𝑠
d𝑇𝑎 = 𝑓𝑇𝑎 (𝑇𝑎, 𝑇𝑠, 𝑅𝑛)d𝑡 + 𝜎𝑎d𝜔𝑎
𝒅 =

[

𝑇𝑎, 𝜙
]𝑇

Observation
equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜙 = 𝜙 + 𝑣𝜙, 𝑣𝜙 ∼ 𝑁𝑖𝑖𝑑 (0, 𝑅𝜙)
𝑑𝑇𝑎 = 𝑇𝑎 + 𝑣𝑇𝑎 , 𝑣𝑇𝑎 ∼ 𝑁𝑖𝑖𝑑 (0, 𝑅𝑇𝑎 )

𝒚𝑑 =
[

𝑑𝑇𝑎 , 𝑑𝜙
]𝑇
,

(13)

he model in (13) returns the important weather elements in 𝒅 and
he corresponding observations in 𝒚𝑑 . Since (13) is based on (non-
inear) SDEs, we need to use e.g. the CDEKF to compute the certainty-
quivalent forecasts. This involves numerical solutions to differential
quations and requires local weather measurements as the initial con-
itions preferably from the building site itself. In practice though, the
loud cover is difficult to observe without specialised equipment. Due
o the strong correlation between the cloud cover and solar radiation
e instead estimate cloud cover at time 𝑡𝑘, 𝜅̂𝑘|𝑘, as the most likely to
enerate the observed solar radiation, 𝑑𝜙,𝑘. Due to the one-way cou-
ling of the SDEs in (13) between the cloud cover and air temperature
odels, we split the computations into separate parts described in
lgorithm 1. We collect the forecasts in the sequence {𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0, where
∈ N is the prediction horizon. The subscript 𝑘+ 𝑖|𝑘 means that 𝒅̂𝑘+𝑖|𝑘

s an estimate of 𝒅(𝑡𝑘+𝑖) given information up till time 𝑡𝑘.

. Model predictive control

This paper uses linear Economic MPC (EMPC) based on SDEs. The
verall aim in linear Economic MPC is to mitigate disturbances and
ontrol a linear dynamical system to meet operational constraints at
inimum cost [30,51]. It minimises the cost according to a price signal
hat reflects the desired behaviour. The desired behaviour could be to
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inimise the CO2 emission, the total electricity cost, or the total usage
f electricity [52–54]. The MPC algorithm is depicted inside the dashed
quare in Fig. 3 and consists of a filter and an optimal control problem.

This section provides a short introduction to the general mathematical
framework of MPC based on SDEs with a particular emphasis on how
to embed disturbance forecasts.

4.1. Filtering

For stochastic systems or in cases where we do not observe all
states, i.e. a system with hidden states, we need to use a filter to
estimate the system. Due to the stochasticity, we cannot determine the
system states exactly. Instead, we seek an estimate of the present system
states, 𝒙̂𝑘|𝑘 = E[𝒙(𝑡𝑘)|𝑘], and its uncertainty, 𝑃𝑘|𝑘 = Var

[

𝒙(𝑡𝑘)|𝑘
]

where 𝑘 is the information up until time 𝑡𝑘. Due to the discrete
computational nature of computers, it is sometimes advantageous to
work with a discrete-time system. For SDEs in the form (2), we perform
an exact discretisation with 𝑇𝑠 = 𝑡𝑘+1 − 𝑡𝑘 assuming that the input and
disturbance are constant within each sampling period, 𝑇𝑠; 𝒖(𝑡) = 𝒖𝑘
and 𝒅(𝑡) = 𝒅𝑘 for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[. This is also called zero-order-hold
discretisation and results in the discrete time linear state space model

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸𝒅𝑘 +𝒘𝑘 , (14a)

𝒚𝑠,𝑘 = 𝐶𝒙𝑘 + 𝒗𝑠,𝑘 , (14b)

𝒘𝑘 ∼ 𝑁𝑖𝑖𝑑 (𝟎, 𝑄𝑠), 𝒗𝑠,𝑘 ∼ 𝑁𝑖𝑖𝑑 (𝟎, 𝑅𝑠) , (14c)

with 𝐴 = exp(𝐴𝑐𝑇𝑠), 𝐵 = ∫ 𝑇𝑠0 exp(𝐴𝑐𝑠)𝐵𝑐d𝑠, and 𝐸 = ∫ 𝑇𝑠0 exp(𝐴𝑐𝑠)𝐸𝑐d𝑠
being matrices governing the discrete-time dynamics. 𝑄𝑠 = ∫ 𝑇𝑠0 exp
(𝐴𝑐𝑠)𝐺𝑐𝐺𝑇𝑐 exp(𝐴𝑇𝑐 𝑠)d𝑠 is the covariance of the process noise and 𝑅𝑠 is
the covariance of the measurement noise. The discretisation is exact
in the sense that at the discrete times 𝑡𝑘, 𝑘 ∈ N, the discrete- and
continuous-time systems are identical, 𝒙𝑘 = 𝒙(𝑡𝑘). When the system is
linear and the noise is Gaussian as in (14), the Kalman filter provides
an optimal estimate of the system states. Given an observation, 𝒚𝑠,𝑘,
and a one-step prediction of the state vector, 𝒙̂𝑘|𝑘−1, the Kalman filter
algorithm computes the optimal filtered state estimate, 𝒙̂𝑘|𝑘, and the
covariance of the filtered state estimate, 𝑃𝑘|𝑘.

4.2. Optimal control problem

The optimal control problem of MPC is based on a cost function,
𝜑𝑘, that is used to rank the feasible solutions and is formulated such
that it promotes a desired behaviour of the system. The optimal control
problem determines the optimal input sequence, which we denote with
a hat {𝒖̂𝑘+𝑖|𝑘}𝑁−1

𝑖=0 , to the system given an estimated initial state, 𝒙̂𝑘|𝑘,
and the disturbance forecast, {𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0. By using the disturbance fore-
cast generated by Algorithm 1, {𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0, we decouple the disturbance
estimation and the system state estimation. From a theoretical point
of view, this is a sub-optimal estimate. But the approximation error is
small with the given external sensors and it has the advantage that
different parties can supply the disturbance forecast and MPC. The
6

general optimal control problem including the disturbances is defined
by the following Bolza problem [55]

𝐽 (𝒙̂𝑘|𝑘, 𝒖̂𝑘−1|𝑘, {𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0) = (15a)

min
𝒖,𝒔

𝜑𝑘 , (15b)

𝑠.𝑡. 𝒙(𝑡𝑘) = 𝒙̂𝑘|𝑘 , (15c)

𝒖(𝑡) = 𝒖𝑘+𝑖|𝑘, 𝑡 ∈ [𝑡𝑘+𝑖, 𝑡𝑘+𝑖+1[, 𝑖 ∈  , (15d)

𝒅(𝑡) = 𝒅̂𝑘+𝑖|𝑘, 𝑡 ∈ [𝑡𝑘+𝑖, 𝑡𝑘+𝑖+1[, 𝑖 ∈  , (15e)

d𝒙(𝑡) = 𝑓𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡))d𝑡, 𝑡 ∈ 𝑘, (15f)

𝒖min ≤ 𝒖𝑘+𝑖|𝑘 ≤ 𝒖max, 𝑖 ∈  , (15g)

𝛥𝒖min ≤ 𝛥𝒖𝑘+𝑖|𝑘 ≤ 𝛥𝒖max, 𝑖 ∈  , (15h)

𝑐(𝒙(𝑡)) + 𝒔(𝑡) ≥ 𝟎, 𝑡 ∈ 𝑘, (15i)

𝒔(𝑡) ≥ 𝟎, 𝑡 ∈ 𝑘, (15j)

where the cost function is in the form

𝜑𝑘 = ∫

𝑡𝑘+𝑁

𝑡𝑘
𝓁(𝒙(𝜏), 𝒖(𝜏))d𝜏 + 𝓁𝑏(𝒙(𝑡𝑘+𝑁 )) + ∫

𝑡𝑘+𝑁

𝑡𝑘
𝓁𝑠(𝒔(𝜏))d𝜏. (16)

The stage costs, 𝓁(𝒙(𝑡), 𝑢(𝑡)) and 𝓁𝑠(𝑠(𝑡)), and the cost-to-go, 𝓁𝑏(𝒙(𝑡𝑘+𝑁 )),
re

𝓁(𝒙(𝑡), 𝑢(𝑡)) = 𝒄(𝑡)𝑇 𝒖(𝑡) , (17a)

𝑏(𝒙(𝑡𝑘+𝑁 )) = 0 , (17b)

𝓁𝑠(𝑠(𝑡)) = 𝝆(𝑡)𝑇 𝒔(𝑡) , (17c)

uch that the cost function, 𝜑, becomes

𝑘 = ∫

𝑡𝑘+𝑁

𝑡𝑘

(

𝒄(𝜏)𝑇 𝒖(𝜏) + 𝝆(𝜏)𝑇 𝒔(𝜏)
)

d𝜏 , (18)

n the optimal control problem, 𝑘 = [𝑡𝑘, 𝑡𝑘+𝑁 [ is both the control
nd the prediction horizon.  = {0, 1,… , 𝑁 − 1}. 𝒙̂𝑘|𝑘 is the initial
ondition of the system estimated by a state estimator. {𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0 is the
equence of advanced forecasts obtained from the disturbance model
n Section 3. 𝑐(𝒙(𝑡)) represents the constraint functions. 𝒔(𝑡) are slack
ariables that allow solutions outside of the desired domain and we
enalise them with 𝓁𝑠(𝒔(𝑡)). 𝒄(𝑡) is the electricity price signal and 𝝆(𝑡)
s the slack penalty. 𝝆(𝑡) should be large enough to make the preferred
olution satisfy the constraints whenever possible. We assume that the
rice signal is piece-wise constant in each sampling period, 𝒄(𝑡) = 𝒄𝑘,
∈ [𝑡𝑘, 𝑡𝑘+1[. 𝓁𝑏 is a cost-to-go term ranking the end-state, 𝒙(𝑡𝑘+𝑁 ). It can
e very useful to include for smart buildings with batteries or EVs [3].
owever, for long prediction horizons it has negligible effect on the
losed-loop performance. Accordingly, we set it equal to zero which
akes (15) a Lagrange problem. For the optimal control problem, we

now the actual input during time [𝑡𝑘−1, 𝑡𝑘], 𝒖̂𝑘−1|𝑘, should it differ from
he control signal 𝒖̂𝑘−1|𝑘−1. The optimal control, denoted 𝒖̂(𝑡), is the 𝒖(𝑡)
hat minimises (15).

.2.1. Discretisation of the optimal control problem
In the discretisation of the optimal control problem (15), we con-

ider the output constraints (15i)–(15j) as point-wise constraints. The
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input, 𝒖𝑘, is piece-wise constant. Consequently, the cost function (16)
becomes

𝜑𝑘 =
𝑁−1
∑

𝑖=0
𝒄𝑇𝑘+𝑖|𝑘𝒖𝑘+𝑖|𝑘 +

𝑁−1
∑

𝑖=0
𝝆𝑇𝑘+𝑖+1|𝑘𝒔𝑘+𝑖+1|𝑘 . (19)

The dynamics are linear and discretised and the soft output constraints
are assumed to be linear functions, i.e. 𝑐(𝒙𝑘) = 𝐻𝒙𝑘 + 𝒃. Consequently,
the optimal control problem (15) is the linear program

𝐽 (𝒙̂𝑘|𝑘, 𝒖̂𝑘−1|𝑘, {𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0) = (20a)

min
𝒖,𝒔

𝜑𝑘 , (20b)

𝑠.𝑡. (20c)

𝒙𝑘|𝑘 = 𝒙̂𝑘|𝑘 , (20d)

𝒙𝑘+𝑖+1|𝑘 = 𝐴𝒙𝑘+𝑖|𝑘 + 𝐵𝒖𝑘+𝑖|𝑘 + 𝐸𝒅̂𝑘+𝑖|𝑘, 𝑖 ∈  , (20e)

𝒖min ≤ 𝒖𝑘+𝑖|𝑘 ≤ 𝒖max, 𝑖 ∈  , (20f)

𝛥𝒖min ≤ 𝛥𝒖𝑘+𝑖|𝑘 ≤ 𝛥𝒖max, 𝑖 ∈  , (20g)

𝐻𝒙𝑘+𝑖+1|𝑘 + 𝒃 + 𝒔𝑘+1+𝑖|𝑘 ≥ 𝟎, 𝑖 ∈  , (20h)

𝒔𝑘+1+𝑖|𝑘 ≥ 𝟎, 𝑖 ∈  . (20i)

The solution to the optimal control problem is a sequence of inputs,
{𝒖̂𝑘+𝑖|𝑘}𝑁−1

𝑖=0 , and slack variables, {𝒔̂𝑘+𝑖+1|𝑘}𝑁−1
𝑖=0 , that minimises the cost

function, 𝜑𝑘.

4.3. The economic model predictive control algorithm

Fig. 3 shows the overall MPC setup and the information flow.
Algorithm 2 provides a listing of the corresponding computational steps
to compute the input (manipulated variable) vector, 𝒖̂𝑘|𝑘, based on
the system measurements, 𝒚𝑠,𝑘, the previous input 𝒖𝑘 = 𝒖̂𝑘−1|𝑘, the
previous filtered state mean–covariance pair, (𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1), the
previous filtered disturbance, 𝒅̂𝑘−1|𝑘−1, and the disturbance forecast,
{𝒅̂𝑘+𝑖|𝑘}𝑁𝑖=0. In this work, Algorithm 1 provides the disturbance forecast.
The MPC algorithm (Algorithm 2) consists of (1) a Kalman filter algo-
rithm organised as a one-step prediction and a measurement update;
and (2) an optimal control problem, which in this case is a linear
program. Solution of the linear program consumes the majority of the
computational time to conduct Algorithm 2. Algorithm 2 is conducted
each sample time when a new measurement arrives.

5. Dynamics of the smart building model

The heating system of the smart building consists of a ground
sourced heat pump using a compressor that heats up water that then
flows into pipes underneath the floor. This has the advantage of be-
ing energy efficient (a COP of 3 is used) due to the thermodynamic
processes that extracts heat from some ambient environment, but is
disadvantaged by its slow dynamics. When the heat pump is turned
on, it takes a long time before the room air temperature responds. This
section briefly investigates the dynamics and time/frequency responses
of the heat pump model and compares it to that of the disturbances
and a standard electrical heater to give an idea and overview of what
effects the heat pump delivers in the settings of a smart building.

5.1. Pulse- and frequency-response analysis

Fig. 4 shows the pulse response of the smart building model for the
first 15 h and 90 days. The disturbances act much faster compared
to the heat pump. After 3 h, the disturbance responses have already
reverted back to a level of around half of their peak pulse response. The
heat pump, however, has not yet heated the room by any significant
amount. These large response differences between the heat pump and
disturbances indicate that the heat pump might not be sufficient at
all times for regulating the indoor air temperature. Fig. 4 shows that
7

Algorithm 2 MPC Algorithm

require: 𝒚𝑠,𝑘, 𝒖̂𝑘−1|𝑘, 𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1,
𝒅𝑘−1|𝑘−1, {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0

Filter:
Compute one-step Kalman predictions
𝒙̂𝑘|𝑘−1 = 𝐴𝒙̂𝑘−1|𝑘−1 + 𝐵𝒖̂𝑘−1|𝑘 + 𝐸𝒅𝑘−1|𝑘−1
𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 +𝑄𝑠

Compute process noise and Kalman gain
𝑅𝑠,𝑘|𝑘−1 = 𝐶𝑃𝑘|𝑘−1𝐶𝑇 + 𝑅𝑠
𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑇𝑅−1

𝑠,𝑘|𝑘−1

Compute filtered estimates
𝒚̂𝑠,𝑘|𝑘−1 = 𝐶𝒙̂𝑘|𝑘−1
𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 +𝐾𝑘(𝒚𝑠,𝑘 − 𝒚̂𝑠,𝑘|𝑘−1)
𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐶)𝑃𝑘|𝑘−1(𝐼 −𝐾𝑘𝐶)𝑇 +𝐾𝑘𝑅𝑠𝐾𝑇

𝑘

Optimal control:
Given 𝒙̂𝑘|𝑘, 𝒖̂𝑘−1|𝑘, and {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0 solve the optimal control problem
in Eq. (20) to obtain {𝒖̂𝑘+𝑖|𝑘}𝑁−1

𝑖=0

return 𝒖̂𝑘|𝑘, 𝒙̂𝑘|𝑘, 𝑃𝑘|𝑘

Fig. 4. The pulse response for 15 h (top) and 90 days (bottom). The step size of the
pulse is given in the legend (all from zero).

electrical heaters heat just as fast as the disturbances, and suggests that
the they are much better suited for dealing with fast responses.

Fig. 5 shows a bode plot of the frequency response of the heat pump
and the electrical heaters compared to the disturbances. It is again
clear, that the heat pump is governed by delayed dynamics for higher
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Fig. 5. Bode plot showing the frequency responses of the disturbances together with
the heat pump and the electrical heaters. The inputs have been normalised in order to
make the response have an amplitude equal to 1 for small frequencies.

frequencies. The response signal for the electrical heaters is identical to
those of the disturbances due to the direct input of heat into the room.

5.2. Summary of the section

The considerations and results of this section suggest that without
anything to provide faster heating or cooling, e.g. electrical heaters or
electrical coolers, the disturbances act with too high frequencies for the
heat pump to deal with. However, as the results will show, if the goal
is to keep the room temperature within some relatively large range,
say from 20 to 24 ◦C during cold months where heating is required at
lmost all times, the heat pump can still be suitable. Electrical heaters
or other faster heating devices) definitely make it easier to obtain good
olutions — but they are not as cheap as the heat pump.

. Results and discussion

This section shows simulation-based results of the potential benefits
f including the advanced disturbance model (1) in MPC. As the
ata we use for the true disturbances do not include meteorological
orecasts, we cannot directly compare the results to that part of the
iterature. Instead, we compare the advanced forecasts to offset-free
ontrol. We also present control results that use perfect forecasts to
ive a theoretical upper bound on the performance. We use data for
ll years during the 7 year period of data.

.1. Visualisation of the advanced disturbance forecasts

As previously discussed, the typical offset-free control schemes in
he literature supply persistent forecasts, that is

𝒅̂ = 𝒅̂ , 𝑖 = 0,… , 𝑁 . (21)
8

𝑘+𝑖|𝑘 𝑘|𝑘
ig. 6 shows a visual comparison of the advanced forecasts in (13) and
ersistent forecasts using a prediction horizon of 𝑁 = 96 hours. The

complex dynamics of the advanced forecasts become visible against the
zero-order (constant) forecasts.

6.2. Simulation-based comparison of the forecasting schemes

As Section 5 shows, the heat pump heats up the smart building in a
slow manner. To diversify the results, we therefore also show the use
of a smart building with faster heating units such as electrical heaters
and/or coolers. The rest of the section describes and presents the
control results for each heating strategy based of the smart building in
Section 2. As the true disturbances, we use the weather data described
in Section 3.1. All results use a slack penalty value of 𝜌𝑘 = 5000, time
sample 𝑇𝑠 = 1 hour, and prediction horizon 𝑁 = 96 hours. We put
the electricity price constant and choose it to be the mean price over 7
months of March data from Nordpool, 𝑐𝑘 = 36.5 [EUR/MWh]. The MPC
thus minimises the amount of electricity spend and does not consider
varying prices.

For the simulation, we choose the temperature constraints to be
𝑇𝑟,𝑚𝑖𝑛 = 20 ◦C and 𝑇𝑟,𝑚𝑎𝑥 = 24 ◦C. Tables 2 and 3 shows the constraint
violation and the total electricity price for all heating strategies respec-
tively. Fig. 7 shows a 15-day sample of the simulations to illustrate the
behavioural differences.

6.2.1. Heating strategy 1: Electrical heaters
Due to the faster heating dynamics of the electrical heaters, we

expect that the persistent forecasts might perform well, since the MPC
can quickly respond to sudden changes of the disturbances. As ex-
pected, the differences between the control solutions in Fig. 7, are not
very visible. The room air temperatures and the heat inputs from the
electrical heaters are almost identical. Table 2 does show a difference in
the performance as the solution using the advanced forecasts perform
slightly better. The electricity prices are almost identical since the total
heat needed over the 7 months is the same for both buildings and the
unit price is the same.

6.2.2. Heating strategy 2: Heat pump
The second heating strategy simulation uses the smart building

equipped with a heat pump. We recall that the heat pump is 3 times
more efficient compared to the faster heating strategies. In contrast to
the electrical heaters, the heating pattern from Fig. 7 is very slow, due
to the heat pump dynamics. But the solution is also cheaper due to the
high efficiency of the heat pump. The difference between the persistent
and advanced forecasts becomes very visible here. Due to the slow
dynamics, the advanced forecasts of the disturbance dynamics matter
much more in this case. Tables 2 and 3 show that the solution using
advanced forecasts is both cheaper and supplies significantly better
indoor climate.
Fig. 6. An example of the advanced forecasts from (13) compared to persistent forecasts.
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Table 2
The constraint violations (the slack variables, 𝑠̂𝑘, in the cost function in (19)) for all heating strategies for
each forecasting scheme. The number in parenthesis is the 𝑝-value of a t-test between the advanced- and
persistent forecasts.

Constraint violation of the control simulations

Heating strategy Persistent Advanced forecasts Perfect

Electrical heaters, 𝑢1 48.5 39.6 (𝑝 = 0.024) 25.1
Heat pump, 𝑢2 157.9 12.3 (𝑝 = 0.008) 1.7
Heat pump plus electrical heaters, 𝒖3 48.0 6.7 (𝑝 = 0.023) 1.2
Heat pump plus electrical heaters and coolers, 𝒖4 4.4 2.4 (𝑝 = 0.038) 0
Table 3
The electricity price in EUR (the first term in the cost function in (19)) for all heating strategies for each
forecasting scheme. The number in parenthesis is the 𝑝-value of a t-test between the advanced- and persistent
forecasts.

Electricity cost of the simulations

Heating strategy Persistent Advanced forecasts Perfect

Electrical heaters, 𝑢1 303.2 302.2 (𝑝 = 0.421) 302.0
Heat pump, 𝑢2 117.3 110.4 (𝑝 = 0.198) 107.7
Heat pump plus electrical heaters, 𝒖3 113.0 108.2 (𝑝 = 0.248) 107.5
Heat pump plus electrical heaters and coolers, 𝒖4 117.9 108.3 (𝑝 = 0.178) 107.5
Fig. 7. A 15-day sample of the total 7 months of simulation for each heating strategy. The black dashed lines are the constraints. It shows the indoor air temperature as well as
he heating inputs at the same point in the time series of disturbances.
.2.3. Heating strategy 3: Heat pump plus electrical heaters
Heating strategy 3 combines the (fast but expensive) electrical

eaters and the (slow but cheap) heat pump. The input is therefore
= [𝑊𝑐 ,𝑊𝑒ℎ]𝑇 . The idea is to have cheap heating from the heat pump

while being able to quickly adapt using the more expensive electrical
heaters. From Table 2 the persistent forecasts show large improvement
compared to only using the heat pump. The improvements for the
advanced forecasts are around 50% better. It is noteworthy that Table 3
indicates that the advanced forecasts supply results that are very close
the perfect forecasts in terms of electricity price and at the same time
improves the indoor climate conditions. Fig. 7 also indicates that the
9

controller using the advanced forecasting scheme uses the electrical
heater less often.

6.2.4. Heating strategy 4: Heat pump plus electrical heaters and coolers
An extension to heating strategy 3 is to include an electrical cooling

unit beside the electrical heaters to also enable cooling. The input
becomes 𝒖 = [𝑊𝑐 ,𝑊𝑒ℎ,𝑊𝑒𝑐 ]𝑇 . This has a great effect on the persistent
forecasts as seen in Table 2 compared with the other strategies. It also
leads to high electricity costs, which are much higher compared to the
other forecasting scheme. The advanced forecasts seem overall superior
and by all indications well suited for efficient temperature control while

improving the comfort regulation.
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Fig. 8. Histogram of the constraint violations for each week of the 7 months of
simulations. The vertical lines represents the mean value of the distribution of the
forecasting strategies.

6.3. Statistical results

To draw statistical conclusions from the results presented in this pa-
per, we carry out a 𝑡-test based on the following setup. We consider the
constraint violation and electricity price of each week of the 7 months
10
of simulation as an observation. This equals 7 ⋅ 4 = 28 observations
for each forecasting method for each heating strategy. Fig. 8 shows
the histograms of the simulation results where the vertical lines are
the mean-value for each forecasting strategy. Similar histograms can be
made for the electricity prices. Tables 2 and 3 show the 𝑝-values of the
t-tests between the mean values of the persistent- and advanced fore-
casts (shown in parenthesis). The constraint violations are all strongly
significant below the 95% confidence level. The cost reduction, though,
does not appear significant near usual confidence levels. However, the
weather is highly correlated over extended time periods, and therefore
we do not effectively have 28 observations for the tests. We note that all
𝑝-values are on the right side of the distribution, which indicates that
with more observations, the electricity reduction becomes significant.

6.4. Inclusion of meteorological forecasts

It is important to stretch that the advanced forecasts work best
for a short future time window. As pointed out by the literature,
meteorological forecasts in general provide more accurate predictions
beyond 4-10 h ahead compared to short-term forecasts. Assuming that
meteorological forecasts are strictly better after 10 h, we can then
expect even better results than presented here by using a combined
short - and long-term forecasting scheme. However this needs more work
to clarify the specific gains and what forecast setup is optimal.

7. Conclusions

This paper proposed a method for incorporating advanced distur-
bance models into a system model based on stochastic differential
equations for model predictive control (MPC). This approach leads
to a generic method for embedding forecasting and disturbance mod-
elling for MPC for energy systems. We illustrated the method by
statistically modelling the weather and controlling the indoor air tem-
perature for a smart building. But the method itself is much more gen-
erally applicable. We mathematically reviewed the disturbance models
and even argued that transformations were necessary for some of
the disturbance-elements to obtain better accuracy by the dynamical
equations.

We compared the advanced embedded forecasts to conventional
offset-free control, which suggested significant improvements of the
control performance. Results suggest electricity savings between 5%–
10% and reduction of constraint violations of up to 90% compared to
offset-free MPC. In fact, we were able to achieve results very close to
the performance supplied by perfect forecasts. We also illustrated the
issues of heat pumps being governed by very slow heat dynamics. Thus,
by combining different heating strategies, better control performance
was achieved. Nevertheless, the heat pump itself performed very well
in combination with the advanced disturbance forecasts and definitely
proved useful.

More work is needed on how to combine advanced, short-term fore-
casts with long-term, meteorological forecasts, since such a setup may
improve current forecasting standards. An example is to investigate the
best point in time to switch from short-term to long-term predictions.
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